Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Ann Intern Med ; 175(9): 1310-1321, 2022 09.
Article in English | MEDLINE | ID: covidwho-1994458

ABSTRACT

DESCRIPTION: Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS: These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT): The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS): The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT: CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , Hospitalization , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
2.
Vox Sang ; 117(6): 822-830, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1891703

ABSTRACT

BACKGROUND AND OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has impacted blood systems worldwide. Challenges included maintaining blood supplies and initiating the collection and use of COVID-19 convalescent plasma (CCP). Sharing information on the challenges can help improve blood collection and utilization. MATERIALS AND METHODS: A survey questionnaire was distributed to International Society of Blood Transfusion members in 95 countries. We recorded respondents' demographic information, impacts on the blood supply, CCP collection and use, transfusion demands and operational challenges. RESULTS: Eighty-two responses from 42 countries, including 24 low- and middle-income countries, were analysed. Participants worked in national (26.8%) and regional (26.8%) blood establishments and hospital-based (42.7%) institutions. CCP collection and transfusion were reported by 63% and 36.6% of respondents, respectively. Decreases in blood donations occurred in 70.6% of collecting facilities. Despite safety measures and recruitment strategies, donor fear and refusal of institutions to host blood drives were major contributing factors. Almost half of respondents working at transfusion medicine services were from large hospitals with over 10,000 red cell transfusions per year, and 76.8% of those hospitals experienced blood shortages. Practices varied in accepting donors for blood or CCP donations after a history of COVID-19 infection, CCP transfusion, or vaccination. Operational challenges included loss of staff, increased workloads and delays in reagent supplies. Almost half of the institutions modified their disaster plans during the pandemic. CONCLUSION: The challenges faced by blood systems during the COVID-19 pandemic highlight the need for guidance, harmonization, and strengthening of the preparedness and the capacity of blood systems against future infectious threats.


Subject(s)
COVID-19 , Pandemics , Blood Banks , Blood Donors , Blood Transfusion , COVID-19/epidemiology , COVID-19/therapy , Humans , Immunization, Passive , Surveys and Questionnaires , COVID-19 Serotherapy
3.
Transfusion ; 62(2): 418-428, 2022 02.
Article in English | MEDLINE | ID: covidwho-1571123

ABSTRACT

BACKGROUND: Randomized clinical trial data show that early plasma transfusion may save lives among trauma patients. Supplying plasma in remote environments is logistically challenging. Freeze-dried plasma (FDP) offers a possible solution. STUDY DESIGN AND METHODS: A Terumo BCT plasma freeze-drying system was evaluated. We compared pooled frozen plasma (FP) units with derived Terumo BCT FDP (TFDP) units and pooled COVID-19 convalescent apheresis fresh-frozen plasma (CC-AFFP) with derived CC-TFDP units. Parameters measured were: coagulation factors (F) II; V; VII; VIII; IX; XI; XIII; fibrinogen; Proteins C (PC) and S (PS); antithrombin (AT); α2 -antiplasmin (α2 AP); ADAMTS13; von Willebrand Factor (vWF); thrombin-antithrombin (TAT); D-dimer; activated complement factors 3 (C3a) and 5 (C5a); pH; osmolality; prothrombin time (PT); and activated partial thromboplastin time (aPTT). Antibodies to SARS-CoV-2 in CC-AFFP and CC-TFDP units were compared by plaque reduction assays and viral protein immunoassays. RESULTS: Most parameters were unchanged in TFDP versus FP or differed ≤15%. Mean aPTT, PT, C3a, and pH were elevated 5.9%, 6.9%, 64%, and 0.28 units, respectively, versus FP. CC-TFDP showed no loss of SARS-CoV-2 neutralization titer versus CC-AFFP and no mean signal loss in most pools by viral protein immunoassays. CONCLUSION: Changes in protein activities or clotting times arising from freeze-drying were <15%. Although C3a levels in TFDP were elevated, they were less than literature values for transfusable plasma. SARS-CoV-2-neutralizing antibody titers and viral protein binding levels were largely unaffected by freeze-drying. In vitro characteristics of TFDP or CC-TFDP were comparable to their originating plasma, making future clinical studies appropriate.


Subject(s)
Blood Component Removal , Blood Component Transfusion , COVID-19 , Freeze Drying , Antithrombins , COVID-19/therapy , Canada , Hemostatics , Humans , Immunization, Passive , Plasma , SARS-CoV-2 , Viral Proteins , COVID-19 Serotherapy
4.
Nat Med ; 27(11): 2012-2024, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526091

ABSTRACT

The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset ( NCT04348656 ). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm-relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94-1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02-1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57-0.95 and OR = 0.66, 95% CI 0.50-0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14-2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.


Subject(s)
COVID-19/therapy , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/epidemiology , Canada/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Passive , Intention to Treat Analysis , Male , Middle Aged , SARS-CoV-2/immunology , Treatment Outcome , United States/epidemiology , COVID-19 Serotherapy
7.
Vox Sang ; 116(8): 872-879, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1402988

ABSTRACT

BACKGROUND: The lack of definitive treatment or preventative options for COVID-19 led many clinicians early on to consider convalescent plasma (CCP) as potentially therapeutic. Regulators, blood centres and hospitals worldwide worked quickly to get CCP to the bedside. Although response was admirable, several areas have been identified to help improve future pandemic management. MATERIALS AND METHODS: A multidisciplinary, multinational subgroup from the ISBT Working Group on COVID-19 was tasked with drafting a manuscript that describes the lessons learned pertaining to procurement and administration of CCP, derived from a comprehensive questionnaire within the subgroup. RESULTS: While each country's responses and preparedness for the pandemic varied, there were shared challenges, spanning supply chain disruptions, staffing, impact of social distancing on the collection of regular blood and CCP products, and the availability of screening and confirmatory SARS-CoV-2 testing for donors and patients. The lack of a general framework to organize data gathering across clinical trials and the desire to provide a potentially life-saving therapeutic through compassionate use hampered the collection of much-needed safety and outcome data worldwide. Communication across all stakeholders was identified as being central to reducing confusion. CONCLUSION: The need for flexibility and adaptability remains paramount when dealing with a pandemic. As the world approaches the first anniversary of the COVID-19 pandemic with rising rates worldwide and over 115 million cases and 2·55 million deaths, respectively, it is important to reflect on how to better prepare for future pandemics as we continue to combat the current one.


Subject(s)
COVID-19 , Pandemics , COVID-19/therapy , COVID-19 Testing , Humans , Immunization, Passive , Pandemics/prevention & control , SARS-CoV-2 , COVID-19 Serotherapy
8.
Vox Sang ; 116(8): 849-861, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1402984

ABSTRACT

Growing evidence suggests that ABO blood group may play a role in the immunopathogenesis of SARS-CoV-2 infection, with group O individuals less likely to test positive and group A conferring a higher susceptibility to infection and propensity to severe disease. The level of evidence supporting an association between ABO type and SARS-CoV-2/COVID-19 ranges from small observational studies, to genome-wide-association-analyses and country-level meta-regression analyses. ABO blood group antigens are oligosaccharides expressed on red cells and other tissues (notably endothelium). There are several hypotheses to explain the differences in SARS-CoV-2 infection by ABO type. For example, anti-A and/or anti-B antibodies (e.g. present in group O individuals) could bind to corresponding antigens on the viral envelope and contribute to viral neutralization, thereby preventing target cell infection. The SARS-CoV-2 virus and SARS-CoV spike (S) proteins may be bound by anti-A isoagglutinins (e.g. present in group O and group B individuals), which may block interactions between virus and angiotensin-converting-enzyme-2-receptor, thereby preventing entry into lung epithelial cells. ABO type-associated variations in angiotensin-converting enzyme-1 activity and levels of von Willebrand factor (VWF) and factor VIII could also influence adverse outcomes, notably in group A individuals who express high VWF levels. In conclusion, group O may be associated with a lower risk of SARS-CoV-2 infection and group A may be associated with a higher risk of SARS-CoV-2 infection along with severe disease. However, prospective and mechanistic studies are needed to verify several of the proposed associations. Based on the strength of available studies, there are insufficient data for guiding policy in this regard.


Subject(s)
ABO Blood-Group System , COVID-19 , ABO Blood-Group System/genetics , Blood Grouping and Crossmatching , Humans , Prospective Studies , SARS-CoV-2
9.
Trials ; 22(1): 323, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1273249

ABSTRACT

BACKGROUND: Convalescent plasma has been used for numerous viral diseases including influenza, severe acute respiratory syndrome, Middle East respiratory syndrome and Ebola virus; however, evidence to support its use is weak. SARS-CoV-2 is a novel coronavirus responsible for the 2019 global pandemic of COVID-19 community acquired pneumonia. We have undertaken a randomized controlled trial to assess the efficacy and safety of COVID-19 convalescent plasma (CCP) in patients with SARS-CoV-2 infection. METHODS: CONCOR-1 is an open-label, multicentre, randomized trial. Inclusion criteria include the following: patients > 16 years, admitted to hospital with COVID-19 infection, receiving supplemental oxygen for respiratory complications of COVID-19, and availability of blood group compatible CCP. Exclusion criteria are : onset of respiratory symptoms more than 12 days prior to randomization, intubated or imminent plan for intubation, and previous severe reactions to plasma. Consenting patients are randomized 2:1 to receive either approximately 500 mL of CCP or standard of care. CCP is collected from donors who have recovered from COVID-19 and who have detectable anti-SARS-CoV-2 antibodies quantified serologically. The primary outcome is intubation or death at day 30. Secondary outcomes include ventilator-free days, length of stay in intensive care or hospital, transfusion reactions, serious adverse events, and reduction in SARS-CoV-2 viral load. Exploratory analyses include patients who received CCP containing high titre antibodies. A sample size of 1200 patients gives 80% power to detect a 25% relative risk reduction assuming a 30% baseline risk of intubation or death at 30 days (two-sided test; α = 0.05). An interim analysis and sample size re-estimation will be done by an unblinded independent biostatistician after primary outcome data are available for 50% of the target recruitment (n = 600). DISCUSSION: This trial will determine whether CCP will reduce intubation or death non-intubated adults with COVID-19. The trial will also provide information on the role of and thresholds for SARS-CoV-2 antibody titres and neutralization assays for donor qualification. TRIAL REGISTRATION: Clinicaltrials.gov NCT04348656 . Registered on 16 April 2020.


Subject(s)
COVID-19 , Coronavirus Infections , Adult , Bisoprolol , COVID-19/therapy , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
10.
Transfusion ; 61(5): 1440-1446, 2021 05.
Article in English | MEDLINE | ID: covidwho-1140309

ABSTRACT

BACKGROUND: Convalescent plasma products are a potential passive immunotherapy for Coronavirus disease 2019 (COVID-19) disease. Various approaches have been utilized to determine the concentration of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-neutralizing antibodies in plasma products. The Canadian Blood Services used Plaque Reduction Neutralization Test 50 (PRNT50) -generated values to qualify convalescent plasma donations supporting clinical trials in Canada. This manuscript describes changes in PRNT50 titers of repeat male plasma donations collected approximately 1-4 months after onset of COVID-19 signs and symptoms in donors. STUDY DESIGN AND METHODS: Men were eligible to donate if they: met standard criteria, were < 67 years of age, reported a previous SARS-CoV-2-positive nucleic acid test, and recovered and were symptom free for at least 28 days prior to donation. Repeat donation analysis required at least one original and one repeat donation where a PRNT50 was performed. RESULTS: From April 29, 2020 to July 25, 2020, 156 donors donated once, with 78 (50%) of the donated plasma having PRNT50 titers of ≥1:160. Thirty-seven (23.7%) of the donated plasma had a titer of 1:40 or 1:80 (individuals donating this plasma were asked to donate a second time only). A total of 30 donors (19.2%) had repeat donations. Of the repeat donors, 15 (50%) had at least an eightfold change from peak to trough PRNT50 titers within greater than 90 days after onset of COVID-19 symptoms. CONCLUSIONS: Blood operators cannot infer that SARS-CoV-2 PRNT50 will remain high in repeat plasma donors 3-4 months after onset of COVID-19 symptoms.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/therapy , Convalescence , SARS-CoV-2/metabolism , Adult , Canada , Humans , Immunization, Passive , Male , Middle Aged , COVID-19 Serotherapy
12.
Vox Sang ; 116(1): 88-98, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1066772

ABSTRACT

BACKGROUND AND OBJECTIVES: Use of convalescent plasma for coronavirus disease 2019 (COVID-19) treatment has gained interest worldwide. However, there is lack of evidence on its dosing, safety and effectiveness. Until data from clinical studies are available to provide solid evidence for worldwide applicable guidelines, there is a need to provide guidance to the transfusion community and researchers on this emergent therapeutic option. This paper aims to identify existing key gaps in current knowledge in the clinical application of COVID-19 convalescent plasma (CCP). MATERIALS AND METHODS: The International Society of Blood Transfusion (ISBT) initiated a multidisciplinary working group with worldwide representation from all six continents with the aim of reviewing existing practices on CCP use from donor, product and patient perspectives. A subgroup of clinical transfusion professionals was formed to draft a document for CCP clinical application to identify the gaps in knowledge in existing literature. RESULTS: Gaps in knowledge were identified in the following main domains: study design, patient eligibility, CCP dose, frequency and timing of CCP administration, parameters to assess response to CCP treatment and long-term outcome, adverse events and CCP application in less-resourced countries as well as in paediatrics and neonates. CONCLUSION: This paper outlines a framework of gaps in the knowledge of clinical deployment of CPP that were identified as being most relevant. Studies to address the identified gaps are required to provide better evidence on the effectiveness and safety of CCP use.


Subject(s)
COVID-19/therapy , Child , Clinical Trials as Topic , Humans , Immunization, Passive/adverse effects , Infant, Newborn , Research , Research Design , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
13.
Blood Adv ; 4(20): 4981-4989, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-873909

ABSTRACT

Studies on severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) suggest a protective effect of anti-A antibodies against viral cell entry that may hold relevance for SARS-CoV-2 infection. Therefore, we aimed to determine whether ABO blood groups are associated with different severities of COVID-19. We conducted a multicenter retrospective analysis and nested prospective observational substudy of critically ill patients with COVID-19. We collected data pertaining to age, sex, comorbidities, dates of symptom onset, hospital admission, intensive care unit (ICU) admission, mechanical ventilation, continuous renal replacement therapy (CRRT), standard laboratory parameters, and serum inflammatory cytokines. National (N = 398 671; P = .38) and provincial (n = 62 246; P = .60) ABO blood group distributions did not differ from our cohort (n = 95). A higher proportion of COVID-19 patients with blood group A or AB required mechanical ventilation (P = .02) and CRRT (P = .004) and had a longer ICU stay (P = .03) compared with patients with blood group O or B. Blood group A or AB also had an increased probability of requiring mechanical ventilation and CRRT after adjusting for age, sex, and presence of ≥1 comorbidity. Inflammatory cytokines did not differ between patients with blood group A or AB (n = 11) vs O or B (n = 14; P > .10 for all cytokines). Collectively, our data indicate that critically ill COVID-19 patients with blood group A or AB are at increased risk for requiring mechanical ventilation, CRRT, and prolonged ICU admission compared with patients with blood group O or B. Further work is needed to understand the underlying mechanisms.


Subject(s)
ABO Blood-Group System/blood , Betacoronavirus/isolation & purification , Coronavirus Infections/blood , Pneumonia, Viral/blood , Aged , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Cytokines/blood , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Prospective Studies , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index
14.
SELECTION OF CITATIONS
SEARCH DETAIL